The Unified Logging Infrastructure
for Data Analytics at Twitter

George Lee, Jimmy Lin, Chuang Liu, Andrew Lorek, and Dmitriy Ryaboy

Twitter, Inc.
@GeorgedLee @lintool @chuangl4 @mrtall @squarecog

ABSTRACT

In recent years, there has been a substantial amount of work
on large-scale data analytics using Hadoop-based platforms
running on large clusters of commodity machines. A less-
explored topic is how those data, dominated by application
logs, are collected and structured to begin with. In this pa-
per, we present Twitter’s production logging infrastructure
and its evolution from application-specific logging to a uni-
fied “client events” log format, where messages are captured
in common, well-formatted, flexible Thrift messages. Since
most analytics tasks consider the user session as the ba-
sic unit of analysis, we pre-materialize “session sequences”,
which are compact summaries that can answer a large class
of common queries quickly. The development of this infras-
tructure has streamlined log collection and data analysis,
thereby improving our ability to rapidly experiment and it-
erate on various aspects of the service.

1. INTRODUCTION

The advent of scalable, distributed, and fault-tolerant frame-
works for processing large amounts of data—especially the
Hadoop open-source implementation of MapReduce [7]—has
made it easier for organizations to perform massive data an-
alytics to better understand and serve customers and users.
These ideas are, of course, not new: business intelligence,
OLAP, and data warehouses have been around for decades,
but we argue that the field has recently entered a new phase.
The rise of social media and user-generated content, shift to
cheap commodity clusters, and a growing ecosystem of open-
source tools create new challenges as well as rich opportuni-
ties for organizations in search of deeper insights from their
vast stores of accumulated data.

Twitter has built a Hadoop-based platform for large-scale
data analytics running Pig [26, 10] on a cluster of several
hundred machines; see [19] for an earlier description. It
serves more “traditional” business intelligence tasks such
as cubing to support “roll up” and “drill down” of multi-
dimensional data (for example, feeding dashboards and other

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 38th International Conference on Very Large Data Bases,
August 27th - 31st 2012, Istanbul, Turkey.

Proceedings of the VLDB Endowment, Vol. 5, No. 12

Copyright 2012 VLDB Endowment 2150-8097/12/08... $ 10.00.

1771

visualizations) as well as more advanced predictive analytics
such as machine learning [18]. These capabilities, however,
are not the subject of this paper. Instead, we focus on how
log data, on the order of a hundred terabytes uncompressed
in aggregate each day, arrive at the data warehouse from
tens of thousands of production servers, are structured in a
consistent yet flexible format to support data analytics, and
how compressed digests called “session sequences” are ma-
terialized to speed up certain classes of queries. The overall
goal is to streamline our ability to experiment and iterate in
a data-driven fashion based on analysis of log data.

We begin with an overview of our message delivery infras-
tructure built on top of Scribe, an existing piece of open-
source software. We then explain the motivation for de-
veloping a unified logging framework where all events are
captured in common, well-formatted, semi-structured Thrift
messages. Events are identified using a consistent, hier-
archical naming scheme, making it easy to identify data
associated with a particular Twitter client, page, tab, or
even Ul widget. These client event logs simplify analyses
greatly, but at the cost of more verbose logs than might
be necessary for any individual application, which results in
increased overall log volume and thus lower query perfor-
mance. The logs are arranged in partial chronological order
when they arrive in the data warehouse, but the most com-
mon unit of analysis is the user session—therefore, analytical
queries usually begin with scans over potentially terabytes
of data, followed by a group-by to reconstruct the user ses-
sions; only then does the actual analysis begin. To support
this common case operation, we pre-materialize compressed
summaries of client events organized by user sessions. These
are about fifty times smaller than the original logs, but sup-
port large classes of common queries. We call these “session
sequences”, and they address many of the performance is-
sues with client events logs.

The goal of this paper is to share with the community
our experiences in developing Twitter’s unified logging in-
frastructure. There has been a lot of published research
studies [1, 25, 4, 21] and industry experiences [28, 5] at the
intersection of databases and Hadoop-based data analytics,
but we note a paucity of details on the interactions between
producers of this large-scale data, the infrastructure that
manages them, the engineers who build analytical pipelines,
the data scientists who mine the vast data stores for insights,
and the final consumers of the analytical results. We aim to
fill this gap, and view this work as having three contribu-
tions: First, we briefly describe the messaging infrastructure
at Twitter that enables robust, scalable delivery and aggre-

Main Datacenter

Scribe
Aggregators

e O
—
e
—
Staging Hadoop Cluster
Scribe Daemons
(Production Hosts)
| Datacenter / \

HDFS

Staging Hadoop Cluster

Main Hadoop
Data Warehouse

HDFS

|

Datacenter
Scribe

Aggregators

—

= o

lemons
Hosts)

Scribe
Aggregators

—

O-
HDFS
O~

Staging Hadoop Cluster

Scribe Daemons
(Production Hosts)

Figure 1: Illustration of Twitter’s Scribe infrastruc-
ture. Scribe daemons on production hosts send
log messages to Scribe aggregators, which deposit
aggregated log data onto per-datacenter staging
Hadoop clusters. Periodic processes then copy data
from these staging clusters into our main Hadoop
data warehouse.

gation of log data totaling around one hundred terabytes
per day. Second, we discuss the evolution from application-
specific logging to a unified logging format that greatly sim-
plifies downstream analyses. Third, we describe a technique
for pre-materializing summaries of user sessions that can be
viewed as a common-case optimization for large classes of
information requests.

We readily admit that, with perhaps the exception of some
small “tricks”, nothing presented in this paper is novel from
a research perspective. However, neither is our architecture
common knowledge within the community and best prac-
tices adopted by all. We are not aware of similar expositions
of “war stories” on what it’s like to wrestle with terabytes of
logs on a daily basis in a continuously evolving and growing
production environment. Therefore, we believe that our ex-
periences are valuable to the community in contributing to
a growing body of knowledge on large-scale data analytics.

2. SCRIBE INFRASTRUCTURE

Scribe is a system for aggregating high volumes of stream-
ing log data in a robust, fault-tolerant, distributed manner.
Its development began at Facebook in 2007, and in October
2008 Scribe was open sourced. Although it has since been
augmented by other systems, Scribe remains an integral part
of Facebook’s logging infrastructure. A description of how
it fits into the overall scheme of Facebook’s data collection
pipeline can be found in [29]. More recent open-source sys-
tems such as Apache Flume' and LinkedIn’s Kafka [17] offer
similar functionality.

Twitter’s Scribe infrastructure is illustrated in Figure 1,
and is similar to the design presented in [29]. A Scribe dae-
mon runs on every production host and is responsible for
sending local log data across the network to a cluster of

 http://incubator.apache.org/flume/

1772

dedicated aggregators in the same datacenter. Each log en-
try consists of two strings, a category and a message. The
category is associated with configuration metadata that de-
termine, among other things, where the data is written.

In our implementation, Scribe daemons discover the host-
names of the aggregators through ZooKeeper [12], a robust,
open-source, wait-free coordination system. ZooKeeper pro-
vides to clients the abstraction of a set of data nodes (called
znodes), organized in a hierarchical namespace, much like a
filesystem. Aggregators register themselves at a fixed loca-
tion using what is known as an “ephemeral” znode, which
exists only for the duration of a client session; the Scribe
daemons consult this location to find a live aggregator they
can connect to. If an aggregator crashes or is restarted by an
administrator, the ZooKeeper session is terminated and the
ephemeral znode disappears. Scribe daemons simply check
Zookeeper again to find another live aggregator. The same
mechanism is used for balancing load across aggregators.

The aggregators in each datacenter are co-located with a
staging Hadoop cluster. Their task is to merge per-category
streams from all the server daemons and write the merged
results to HDFS (of the staging Hadoop cluster), compress-
ing data on the fly. Another process is responsible for mov-
ing these logs from the per-datacenter staging clusters into
the main Hadoop data warehouse. It applies certain san-
ity checks and transformations, such as merging many small
files into a few big ones and building any necessary indexes.
Lastly, it ensures that by the time logs are made available
in the main data warehouse, all datacenters that produce
a given log category have transferred their logs. Once all
of this is done, the log mover pipeline atomically slides an
hour’s worth of logs into the main data warehouse. The
entire pipeline is robust with respect to transient failures—
Scribe daemons discover alternative aggregators via Zoo-
Keeper upon aggregator failure, and aggregators buffer data
on local disk in case of HDF'S outages. We do not delve into
too much detail here, as these are fairly mature systems with
widely-known best practices.

At the end of the log mover pipeline, logs arrive in the
main data warehouse and are deposited in per-category,
per-hour directories (e.g., /logs/category/YYYY/MM/DD/HH/).
Within each directory, log messages are bundled in a small
number of large files. The ordering of messages within each
file is unspecified, although in practice they are partially
time-ordered (since each file contains multiple files from ag-
gregators that have been rolled up). This has practical con-
sequences for downstream analysis, as we describe later.

3. TOWARD UNIFIED LOGGING

This section describes our experiences in moving from
application-specific logging to a unified log format. We mo-
tivate this evolution by highlighting some of the challenges
encountered when trying to actually perform analyses over
the data in search of insights. As it is impossible to frame
this discussion without referring to the analytics platform it-
self, we provide a brief description here, but refer the reader
to previously-published details [19, 18].

When the contents of records are well-defined, they are se-
rialized using one of two serialization frameworks. Protocol
Buffers? (protobufs) and Thrift® are two language-neutral

Zhttp:/ /code.google.com/p/protobuf/
3http://thrift.apache.org/

data interchange formats that provide compact encoding of
structured data. Both support nested structures, which al-
low developers to capture and describe rich data in a flexible
way. In addition, both protobufs and Thrift are extensible,
allowing messages to gradually evolve over time while pre-
serving backwards compatibility. For example, messages can
be augmented with additional fields in a completely trans-
parent way. For logging, there is a preference for Thrift since
Thrift is also used widely in Twitter as a language-agnostic
RPC framework and thus it is familiar to developers across
the organization.

In a Hadoop job, different record types produce differ-
ent types of input key-value pairs for the mappers, each of
which requires custom code for deserializing and parsing.
Since this code is both regular and repetitive, it is straight-
forward to use the serialization framework to specify the
data schema, from which the serialization compiler gener-
ates code to read, write, and manipulate the data. This is
handled by our system called Elephant Bird,* which auto-
matically generates Hadoop record readers and writers for
arbitrary Protocol Buffer and Thrift messages.

Although the analytics platform at Twitter is built around
Hadoop, actual production jobs and ad hoc queries are per-
formed mostly using Pig, a high-level dataflow language that
compiles into physical plans that are executed on Hadoop [26,
10]. Pig (via a language called Pig Latin) provides concise
primitives for expressing common operations such as projec-
tion, selection, group, join, etc. This conciseness comes at
low cost: Pig scripts approach the performance of programs
directly written in Hadoop Java. Yet, the full expressive-
ness of Java is retained through a library of custom UDFs
that expose core Twitter libraries (e.g., for tokenizing and
manipulating tweets).

Production analytics jobs are coordinated by our work-
flow manager called Oink, which schedules recurring jobs at
fixed intervals (e.g., hourly, daily). Oink handles dataflow
dependencies between jobs; for example, if job B requires
data generated by job A, then Oink will schedule A, verify
that A has successfully completed, and then schedule job B
(all while making a best-effort attempt to respect periodicity
constraints). Finally, Oink preserves execution traces for au-
dit purposes: when a job began, how long it lasted, whether
it completed successfully, etc. One common Oink data de-
pendency is the log mover pipeline, so once logs arrive in
the main data warehouse, dependent jobs are automatically
triggered. Each day, Oink schedules hundreds of Pig scripts,
which translate into tens of thousands of Hadoop jobs.

3.1 Motivation

Initially, all applications, and in some cases, even parts of
applications, defined their own, custom structure that they
logged via Scribe. This approach afforded significant flexi-
bility and allowed for very fast application logging develop-
ment, as developers had to come up with a simple logging
object definition in Thrift, start using it, and supply the
necessary metadata to link their logs to the Thrift object
description. Elephant Bird automatically handled Hadoop-
specific code generation for processing Thrift messages using
either Hadoop MapReduce or Pig. However, we soon dis-
covered that this approach also had several drawbacks when
it came to using and managing the data. Here, we provide
a sampling of the challenges.

“http://github.com/kevinweil /elephant-bird

1773

Consider, for example, automation of common summa-
rization tasks (“how many events of each type did we see
yesterday?”). This required custom, per-category configura-
tion. Application developers adopt different approaches for
logging common primitives such as timestamps; program-
mers accustomed to different language environments have
conflicting conventions for naming fields and variables. This
resulted in code generating and analyzing logs being littered
with CamelCase, smallCamelCase, as well as snake_case (and
occasionally, even the dreaded camel_Snake). As a specific
example: Is the user id field uid, userId, userid, or user_id
(of course, not ruling out user_1d)? Other mundane issues
such as whether delimited characters were tabs, spaces, or a
particular control character, as well as the handling of em-
bedded delimiters often caused problems—the wrong setting
in a Pig script, for example, would yield no output or com-
plete garbage. Although most of these issues can rightly be
characterized as “annoyances”, accumulation of small minor
annoyances impedes rapid development.

In our setup, each application writes logs using its own
Scribe category. For simplicity, we implemented a one-to-
one mapping between the Scribe category and the HDFS
directory in the main data warehouse where the imported
logs ultimately reside (/logs/category/). In practice, this
creates a resource discovery problem, in that there are lit-
erally several dozen Scribe categories, many non-intuitively
named or whose contents have substantially diverged from
when the Scribe category was first established, making the
category name meaningless at best or misleading at worst.
Since the application developers are often disjoint from the
data scientists who perform the analyses downstream, it is
sometimes difficult, particularly for new hires, to even fig-
ure out what logs are available. As documentation falls out
of sync with code over time, we rely increasingly on tacit
knowledge passed along through group mailing lists and by
word of mouth.

Finding the logs themselves (i.e., “resource discovery”) is
merely the first challenge. With application-specific logging,
log messages are often difficult to understand due to the
myriad of different formats. Some logs are completely regu-
lar Thrift. Some are a union of regular formats, in that log
messages can take one of a finite number of different formats,
where each format is regular. Some are in “natural lan-
guage”, where certain phrases serve as the delimiters. Some
are semi-structured, with repeating and optional fields. Fi-
nally, the “worst” are log messages that themselves have dy-
namic, rich internal structure. An example is frontend logs,
which capture rich user interactions (tweet impressions, link
click-throughs, etc.) in JSON format. These JSON struc-
tures are often nested several layers deep to capture all rel-
evant parameters of the user interaction. At analysis time,
it is often difficult to make sense of the logs: for example, in
the JSON structure, what fields are obligatory, what fields
are optional? For each field, what is the type and range of
values? Can it be null, and if so, what does that indicate?
Even obtaining a complete catalog of all possible message
types is difficult. Internal documentation is almost always
out of date, and the knowledge lives primarily in the team
of developers who created the applications (who themselves
were often fuzzy on the details of code they had written
months ago). To get around this issue, engineers on the an-
alytics team often had to read frontend code to figure out the
peculiarities of a message of interest, or induce the message

Component Description

Example

client client application

page page or functional grouping
section tab or stream on a page
component component, object, or objects
element UI element within the component
action actual user or application action

web, iphone, android

home, profile, who_to_follow

home, mentions, retweets, searches, suggestions
search_box, tweet

button, avatar

impression, click, hover

Table 1: Hierarchical decomposition of client event names.

format manually by writing Pig jobs that scraped large num-
bers of messages to produce key-value histograms. Needless
to say, both of these alternatives are slow and error-prone.

A large part of this particular issue stems from JSON’s
lack of a fixed schema. This affords the developer great flexi-
bility in describing complex data with nested structures, but
it also increases the potential for abuse in creating overly
complex messages without regard to downstream analyti-
cal needs. JSON-specific issues aside, we are still left with
the fact that application-specific logging leads to a prolif-
eration of different formats, making it difficult for data sci-
entists to understand all the data necessary for their jobs.
Of course, we would like to make their lives easier without
burdening application developers upstream, for example, by
forcing them into overly-rigid structures. Like many design
problems, striking a good balance between expressivity and
simplicity is difficult.

Beyond the myriad of logging formats, challenges are com-
pounded when attempting to join data from multiple sources,
as most non-trivial analytics tasks require. Assuming that
one has already found the possibly inconsistently-named
fields on which to join and divined the format of each sepa-
rate application log, making sense of joined data sometimes
required Herculean effort. The issue is that most analyses
are based on a notion of user sessions, from which we can
infer casual relationships: for example, the user entered a
search query, browsed results, and then clicked on a link.
There was no consistent way across all applications to easily
reconstruct the session, except based on timestamps and the
user id (assuming they were actually logged). So, Pig anal-
ysis scripts typically involved joins (by user id), group-by
operations, followed by ordering with respect to timestamps
and other ad hoc bits of code to deal with application-specific
idiosyncrasies (glossing over the fact that timestamps and
other supposedly common elements were captured in half
a dozen different ways). This process was slow and error
prone, since even minor inconsistencies often led to garbage
or empty output.

As aresponse to the challenges described above, the “client
events” unified logging format was developed. We turn our
attention to this next.

3.2 C(lient Events

“Client events” is a relatively recent effort within Twit-
ter to develop a unified logging framework that simplifies
analyses without imposing substantial additional burden on
application developers.

Generalizing the notion of Scribe categories, we imposed
a hierarchical six-level naming scheme for all events (com-
prised of client, page, section, component, element, action),
outlined in Table 1. This six-level decomposition aligns with
the view hierarchy of Twitter clients. For example, in the
case of the main web client (i.e., the twitter.com site), the

1774

namespace corresponds to the page’s DOM structure, mak-
ing it possible to automatically generate event names and
thereby enforce consistent naming. This makes it possible
to perform a reverse mapping also; that is, given only the
event name, we can easily figure out based on the DOM
where that event was triggered.

As a specific example, the following event

web:home:mentions:stream:avatar:profile_click

is triggered whenever there is an image profile click on the
avatar of a tweet in the mentions timeline for a user on
twitter.com (“reading” the event name from right to left).
To combat the dreaded camel_Snake, we imposed consistent,
lowercased naming. This hierarchical namespace makes it
easy to slice-and-dice categories of events with simple reg-
ular expressions to focus on an ad hoc grouping of inter-
est. For example, analyses could be conducted on all ac-
tions on the user’s home mentions timeline on twitter.com
by considering web:home:mentions:*; or track profile clicks
across all clients (twitter.com, iPhone, Android, etc.) with
*:profile_click.

Furthermore, Oink jobs automatically aggregate counts of
events according to the following schemas:

(client, page, section, component, element, action)
(client, page, section, component, *, action)
(client, page, section, *, *, action)

(client, page, *, *, *, action)

(client, *, *, *, *, action)

These counts are presented as top-level metrics in our inter-
nal dashboard, further broken down by country and logged
in/logged out status. Thus, without any additional interven-
tion from the application developer, rudimentary statistics
are computed and made available on a daily basis.

As an alternative design, we had considered a looser tree-
based model for naming client events, i.e., the event names-
pace could be arbitrarily deep. The advantage is that it
avoids empty component names (e.g., if a page doesn’t have
multiple sections, the section component is simply empty)
and supports details as fine-grained as necessary. Flexibil-
ity, however, comes at the cost of complexity and the fact
that the top-level aggregates above would be more difficult
to automatically compute. Ultimately, we decided against
this design and believe that we made the correct decision.

A client event itself is a Thrift structure that contains the
components shown in Table 2 (slightly simplified, but still
preserving the essence of our design). The event_initiator
specifies whether the event was triggered on the client side or
the server side, and whether the event was user initiated or
application initiated (for example, a user’s timeline polls for
new tweets automatically without user intervention). Note
that all client events contain fields for user id, session id

Field

event_initiator

Description
{client, server} x {user, app}

event_name event name
user_id user id
session_id session id

ip user’s IP address
timestamp timestamp

event_details event details

Table 2: Definition of a client event.

(based on browser cookie or other similar identifier), and
IP address. This was an explicit attempt to address the
issues discussed in Section 3.1—where inconsistent tracking
of these elements made joining data across disparate sources
difficult. Since every client event has these fields, with ex-
actly the same semantics, a simple group-by suffices to accu-
rately reconstruct user sessions (of course, timestamps are
still important for ordering events). By extension, stan-
dardizing the location and names of these fields allows us to
implement consistent policies for log anonymization.

Finally, the event_details field holds event-specific details
as key-value pairs. For example, in the profile click event
described above, the details field would hold the id of the
profile clicked on. For an event corresponding to a search
result, the event_details field would hold the target URL,
rank in the result list, and other such information. Since dif-
ferent teams can populate these key-value pairs as they see
fit, the message structure can be flexibly extended without
any central coordination.

It is worth emphasizing that this logging format is im-
posed across all Twitter clients: not only the twitter.com
web site, but also clients on the iPhone, iPad, Android
phones, etc. To the extent possible, events of the same type
across different clients are given the same name. This is
made possible by the consistent design language imposed
in the latest iteration of Twitter clients. For example, all
clients have a section for viewing a user’s mentions (other
tweets that reference the user); an impression means the
same thing, whether on the web client or the iPhone. The
practical effect of this is that Pig scripts written to analyze
behavior on one client can be ported over to another client
with relative ease.

In summary, client events form the foundation of our uni-
fied logging infrastructure in two senses of the word “uni-
fied”: first, in that all log messages share a common format
with clear semantics, and second, in that log messages are
stored in a single place (as opposed to different Scribe cate-
gory silos with application-specific logging). This leads to a
number of advantages, especially compared to application-
specific logging;:

e A consistent, hierarchical event namespace across all Twit-
ter clients and a common message format makes logs eas-
ier to understand and more approachable. This also en-
ables automatic materialization of top-level metrics.

Common semantics for different fields in the Thrift mes-
sages makes it easier to reconstruct user session activity.

A single location for all client event messages simplifies
the resource discovery issue (knowing where to find what
logs). This also obviates the need for joins for many com-
mon types of analyses.

1775

The cost of the above advantages is that clients must im-
plement this specification (whereas before developers were
free to log however they wished). Overall, we feel this is a
worthwhile tradeoff, since the additional burden imposed on
the application developer is minimal.

4. SESSION SEQUENCES

The evolution toward unified logging enables additional
manipulation of log data to support large classes of common
queries. In this section, we describe pre-materialized digests
of user sessions called “session sequences”.

4.1 Motivation

Despite the advantages of a unified logging format, there
is one downside: the logs tend to be more verbose, even after
compression. Unfortunately, we were unable to accurately
quantify the space tradeoff since application-specific logging
was converted gradually to the client events format over a
period of several months, during which Twitter traffic in-
creased measurably. Thus, it is difficult to attribute the
source of log growth.

With the unified client event logs, analyses in terms of user
sessions became simpler—the developer no longer needed to
join multiple disparate data sources, and the presence of
consistent user ids and session ids allowed sessions to be re-
constructed with greater accuracy. However, reconstructing
sessions remained processing intensive—essentially, a large
group-by across potentially terabytes of data. These jobs
routinely spawned tens of thousands of mappers and clogged
our Hadoop jobtracker, performing large amounts of brute
force scans and data shuffling, all before useful analysis ac-
tually began. Furthermore, since analyses tended to focus
on fresh (i.e., newly imported) logs, we observed frequent
contention for a relatively small set of HDFS blocks. We
wished to address this performance issue.

We discovered that large classes of queries could be an-
swered using only the sequence of clients event names within
a user session—the hierarchical namespace provides a lot of
information alone. Critically, these queries did not require
“peering” into the details of the Thrift messages. Exam-
ples are queries that involve computing click-through rate
(CTR) and follow-through rate (FTR) for various features
in the service: how often are search results, who-to-follow
suggestions, trends, etc. clicked on within a session, with
respect to the number of impressions recorded? Similarly,
what fraction of these events led to new followers? In these
cases, it suffices to know that an impression was followed by
a click or follow event—it is not necessary to know what URL
was being clicked on or who exactly was being followed. Of
course, deeper analyses might require breaking down clicks
and follows in terms of topical categories or users’ interests,
etc., but the coarse-grained CTR/FTR calculations remain
a common-case query. Note that top-level CTR/FTR met-
rics can be pre-computed and displayed in dashboards, but
data scientists often desire statistics for arbitrary subsets of
users (e.g., causal users in the U.K. who are interested in
sports), which require ad hoc queries.

Another common class of queries that require only event
names involves navigation behavior analysis, which focuses
on how users navigate within Twitter clients. Examples
questions include: How often do users take advantage of the
“discovery” features? How often do tweet detail expansions
lead to detailed profile views? Answers to these questions

provide important feedback for refining site and client app
design. Given that the event names directly reflect the or-
ganization of the view hierarchy of the clients, the names
alone are sufficient to answer these questions.

In Pig, scripts for computing these types of statistics would
operate over the client event logs. The first operation is
usually to project onto the event name (discarding all other
fields), retaining only those of interest, followed by a group-
by to reconstruct the session. The early projection and fil-
tering keeps the amount of data shuffling (from mappers to
reducers) to a reasonable amount, but the large numbers of
brute force disk scans remain a substantial bottleneck.

Since most of our Pig scripts begin by reconstructing user
sessions, it made sense to simply pre-materialize the ses-
sions. However, instead of materializing the entire client
event Thrift structure, we generate compact, compressed
summaries of the sequence of client event names, thus ad-
dressing the inefficiencies associated with the common scan-
and-project operations (we discuss this design decision in
more detail below). These are the session sequences.

4.2 Implementation

A session sequence is defined as a sequence of symbols
S = {so,S1,52...5n} where each symbol is drawn from a
finite alphabet 3. We define a bijective mapping between
Y. and the universe of event names, so that the sequence of
symbols corresponds to the sequence of client events that
comprise the user session. Each symbol is represented by
a unicode code point, such that any session sequence is a
valid unicode string, i.e., sequence of unicode characters.
Furthermore, we define the mapping between events and
unicode code points (i.e., the dictionary) such that more
frequent events are assigned smaller code points. This in
essence captures a form of variable-length coding, as smaller
unicode points require fewer bytes to physically represent.
For example, the event:

web:home:mentions:stream:avatar:profile_click

might get mapped to \u0235. Unicode comprises 1.1 million
available code points, and it is unlikely that the cardinality
of our alphabet will exceed this. Since each session sequence
is a valid unicode string, we can express analyses in terms of
regular expressions and other common string manipulations.
Note that these session sequences are not meant for direct
human consumption, and we provide tools for accessing and
manipulating them (more below).

Construction of session sequences proceeds in two steps.
Once all logs for one day have been successfully imported
into our main data warehouse, Oink triggers a job that scans
the client event logs to compute a histogram of event counts.
These counts, as well as samples of each event type, are
stored in a known location in HDFS (this is used by our
automatically-generated catalog described in Section 4.3).
The histogram construction job also builds a client event dic-
tionary that maps the event names to unicode code points,
based on frequency as noted above.

In a second pass, sessions are reconstructed from the raw
client event logs. This is accomplished via a group-by on
user_id and session._id; following standard practices, we use
a 30-minute inactivity interval to delimit user sessions. These
sequences of event names are then encoded using the dic-
tionary. The following relation is materialized on HDFS
(slightly simplified):

1776

user_id: long, session_id: string, ip:

string, duration:

string,
session_sequence: int

To summarize, a session sequence is simply a unicode string
that captures the names of the client events that comprise
the session in a compact manner. Alongside this represen-
tation, we store the user and session ids, the IP address
associated with the session, as well as the session duration
in seconds (i.e., temporal interval between the first and last
event in the session). Note that other than the overall ses-
sion duration, session sequences do not preserve any tempo-
ral information about the events (other than relative order-
ing). This was an explicit design choice to support compact
encoding, but we lose the ability to discriminate temporal
gaps between successive events.

It is worthwhile to discuss our choice to materialize these
session sequences, and not to simply alter the physical lay-
out of the raw client event Thrift messages. Raw client event
logs are cumbersome to work with for two independent rea-
sons: first, their large size translates into a lot of brute force
disk scans, and second, the physical on-disk organization re-
quires large group-by operations to reconstruct user sessions
before useful analysis can actually begin. We had originally
considered an alternative design where we simply reorga-
nized (i.e., rewrote) the complete Thrift messages by recon-
structing user sessions. This would have solved the second
issue (large group-by operations) but would have little im-
pact on the first (too many brute force scans). To mitigate
that issue, we could adopt a columnar storage format such
as RCFile [11]. However, this solution primarily focuses on
reducing the running time of each map task; without modi-
fication, RCFiles would not reduce the number of mappers
that are spawned for large analytics jobs (which can easily
number in the tens of thousands) and the associated job-
tracker traffic. Hadoop tasks have relatively high startup
costs, and we would like to avoid this overhead as well. Our
materialized session sequences have the advantage in that
they are about fifty times smaller than the original client
event logs and therefore they address both the group-by and
brute force scan issues at the same time.

In summary, queries over session sequences are substan-
tially faster than queries over the raw client event logs, both
in terms of lower latency and higher throughput. The cost
of increased performance is that session sequences are re-
stricted to answering only a certain class of queries. Nev-
ertheless, as we describe in Section 5, they support a wide
range of applications.

4.3 Client Event Catalog

From our experiences with application-specific logging, we
learned that reducing the barrier to entry for comprehend-
ing log formats not only makes data scientists more produc-
tive, but also helps foster a data-driven culture across the
company by providing easy access to people who wouldn’t
otherwise perform analytics. Part of this is maintaining con-
cise, up-to-date documentation, which our automatically-
generated client event catalog assists with.

Client events represent a vast improvement in compre-
hensibility over application-specific logging, by virtue of two
features: First, the uniform log format means that one can
focus on the semantics of the log message and not the for-
mat. Second, the consistent, hierarchical namespace and
the correspondence between the client view hierarchy and

event names means that client events are to a large extent
self-documenting.

To further enhance the accessibility of our client event
logs, we have written an automatically-generated event cat-
alog and browsing interface which is coupled to the daily
job of building the client event dictionary. The interface
lets users browse and search through the client events in
a variety of ways: hierarchically, by each of the namespace
components, and using regular expressions. For each event,
the interface provides a few illustrative examples of the com-
plete Thrift structure (via the sampling process while build-
ing the client event dictionary, described above). Finally,
the interface allows developers to manually attach descrip-
tions to the event types.

Since the event catalog is rebuilt every day, it is always up
to date. Even if most of the entries do not contain developer-
supplied descriptions, the catalog remains immensely useful
as a single point of entry for understanding log contents.
The only remaining issue, a holdover from the application-
specific logging days, is that without additional documen-
tation, in some cases it is difficult to fully understand the
semantics of event_details with sample messages alone. For
example: Which keys are always present? Which are op-
tional? What are the ranges for values of each key? In
principle, it may be possible to infer from the raw logs them-
selves, but we have not implemented this functionality yet.
On balance, though, we find that supporting extensible key-
value pairs in event_details is a reasonable compromise be-
tween not imposing too much burden on the developer (e.g.,
forcing a rigid schema) and simplifying analyses downstream
(e.g., by moving away from arbitrary JSON).

S. APPLICATIONS

The client event logs and session sequences form the basis
of a variety of applications, a few of which we describe in
this section.

5.1 Summary Statistics

Due to their compact size, statistics about sessions are
easy to compute from the session sequences. A series of daily
jobs generate summary statistics, which feed into our ana-
lytical dashboard called BirdBrain. The dashboard displays
the number of user sessions daily and plotted as a function
of time, which when coupled with a variety of other metrics,
lets us monitor the growth of the service over time and spot
trends. We also provide the ability to drill down by client
type (i.e., twitter.com site, iPhone, Android, etc.) and by
(bucketed) session duration.

5.2 Event Counting

As previously described, session sequences greatly speed
up simple queries that involve ad hoc counting of events.
A typical Pig script might take the following form (slightly
simplified):

define CountClientEvents
CountClientEvents (‘$EVENTS’) ;

raw = load ‘/session_sequences/$DATE/’
using SessionSequencesLoader();

generated = foreach raw generate
CountClientEvents(symbols) ;
grouped = group generated all;

1777

count = foreach grouped generate SUM(generated);
dump count;

We begin by specifying the $EVENTS we wish to count in the
initialization of the CountClientEvents user-defined function;
here, an arbitrary regular expression can be supplied which
is automatically expanded to include all matching events
(via the dictionary that provides the event name to uni-
code code point mapping). The variable $DATE specifies the
date over which to execute the query. A custom Pig loader
abstracts over details of the physical layout of session se-
quences, transparently parsing each field in the tuple and
handling decompression.

Typically, what happens next is a series of transforma-
tions that are query-specific: for example, if the data scien-
tist wishes to restrict consideration of the user population
by various demographics criteria, a join with the users table
followed by selection with the appropriate criteria would en-
sue. Finally, the CountClientEvents UDF is executed, which
returns the number of client events found in the particular
session sequence. Since a session sequence is simply a uni-
code string, the UDF translates into string manipulations af-
ter consulting the client event dictionary for the event name
to unicode code point mapping. A Pig group all followed
by suM tallies up the counts.

A common variant of the above script is a replacement of
SUM by COUNT. Instead of returning the total event count, this
returns the number of user sessions that contain at least one
instance of a particular client event. These analyses are use-
ful for understanding what fraction of users take advantage
of a particular feature.

5.3 Funnel Analytics

Beyond simple counting, one class of complex queries that
the session sequences support is broadly known as “fun-
nel analytics” [2, 22]. Originally developed in the context
of e-commerce sites, these analyses focus on user attention
in a multi-step process. A classic example is the purchase
checkout flow; a canonical funnel might be: users visit their
shopping cart, enter billing and shipping addresses, select
shipping options, enter payment details, and finally con-
firm. The funnel analogy is particularly apt because it cap-
tures abandonment at each step, e.g., users select a shipping
option but never enter payment details. In general, an e-
commerce site wants to maximize the number of users that
flow through the entire funnel (i.e., complete a purchase)
along with related metrics (e.g., total revenue). The num-
ber and nature of each step in the funnel plays an important
role; for example, shortening the number of steps potentially
comes at the cost of making each step in the flow more com-
plex; on the other hand, users have little patience for ac-
tivities that require too many steps. In addition, the layout
and design of each step can have a substantial impact on the
abandonment rate. Companies typically run A/B tests to
optimize the flow [16], for example, varying the page layout
of a particular step or number of overall steps to assess the
impact on end-to-end metrics (e.g., revenue or number of
successfully-completed purchases).

In the context of Twitter, there are a variety of complex
funnels. An important one is the signup flow, which is the
sequence of steps taken by a user to join the service. The
flow needs to be easy for new users but difficult for spam-
mers attempting to create fraudulent accounts. It needs to

show novice users how to use the service without being bor-
ing. Part of the signup flow includes presenting new users
with lists of suggested accounts to follow, broken down into
interest categories, the contents of which impact the user
experience. The complexity of the signup flow admits many
design choices, both in the length of the funnel and the com-
plexity of each step. Given that a vibrant user base is the
lifeblood of a social media service, growing an engaged au-
dience is one of the core priorities of the organization.

While backend analytics tools cannot actually help in the
design process, they are absolutely critical in assessing the
effectiveness of each design. To help, we have created a UDF
for defining funnels:

define Funnel ClientEventsFunnel(‘$EVENT1’
‘$EVENT2’, ...);

where the data scientist specifies an arbitrary number of
stages that make up the funnel in terms of client event
names. After evaluation of the UDF and grouping simi-
lar to the simple event counting script, the output might be
something like:

(0, 490123)
(1, 297071)

which tells us how many of the examined sessions entered
the funnel, completed the first stage, etc. This particular
UDF translates the funnel into a regular expression match
over the session sequence string. Once again, since session
sequences are simply unicode strings, such code is easy to
write. In fact, it is in principle possible to expose the session
sequences themselves to manipulation using arbitrary regu-
lar expressions (mediated by a thin wrapper that handles
the dictionary translation), although we have not yet found
a need for such functionality.

Building on the above example, other variants are easy.
Translating these figures into the number of users (as op-
posed to sessions) is simply a matter of applying the unique
operator in Pig prior to summing up the per-stage counts.
From here, additional statistics such as per-stage abandon-
ment can be easily computed.

5.4 User Modeling

Whereas funnel analytics aims to answer specific questions
about user behavior, we have a parallel branch of work on
the more open-ended question of identifying “interesting”
user behavior. Since session sequences are simply symbol
sequences drawn from a finite alphabet, we can borrow tech-
niques derived from natural language processing (NLP).

A useful tool commonly-used in NLP is language model-
ing [23, 14]. Language models define a probability distribu-
tion over sequences of symbols, P(wiwaws ... Wn—1wWx)
P(w?). Due to the extremely large number of parameters
involved in estimating such a model, it is customary to make
the Markov assumption, that the sequence histories only de-
pends on prior local context. That is, an n-gram language
model is equivalent to a (n-1)-order Markov model. Thus,
we can approximate P(ws|w? ') as follows:

1%

bigrams: P(wg|wF™1) P(wi|wk—1)
P(wglw;™)

P(wglwi™)

~
~

(wi|wr— 1wk —2)

trigrams: P
k—1
P(wk|wy_p 1)

Q

n-grams:

1778

Metrics such as cross entropy and perplexity [23, 14] can be
used to quantify how well a particular n-gram model “ex-
plains” the data, which gives us a sense of much “temporal
signal” there is in user behavior [20, 24]. Intuitively, how
the user behaves right now is strongly influenced by imme-
diately preceding actions; less so by an action 5 steps ago,
and even less by an action 15 steps ago. Language modeling
techniques allow us to more precisely quantify this.

Another useful concept borrowed from the NLP commu-
nity is the notion of collocations, or commonly-occurring
patterns of words [6, 9]; see Pearce [27] for a survey. A
simple example is “hot dog”, where the two terms “hot”
and “dog” co-occur much more frequently than one would
expect if the words simply appeared independently. Collo-
cations frequently have non-compositional meanings, as in
this case. Applying the analogy to session sequences, it is
possible to extract “activity collocates” [20], which represent
potentially interesting patterns of user activity. We have be-
gun to perform these types of analyses, borrowing standard
techniques from text processing such as pointwise mutual
information [6] and log-likelihood ratios [9].

6. ONGOING WORK

The client events unified logging infrastructure went into
production in Spring 2011. Transitioning application-specific
logs over to client event logs happened gradually (although
the logs were almost immediately useful). The session se-
quences went into production Winter 2011. We are presently
working on a number of extensions, some of which are de-
scribed below.

The first attempts to address the limitation of session se-
quences, in that they capture only the event names, and
not details important for certain types of analyses. To com-
plement session sequences, we have recently deployed into
production a generic indexing infrastructure for handling
highly-selective queries called Elephant Twin; this was first
described in [19] and recently presented at the 2012 Hadoop
Summit.® The infrastructure is general, although client
event logs represent one of the first applications.

Although it is fairly obvious that indexes are important
for query performance, there are a number of design and op-
erational challenges that render Hadoop integration a non-
trivial task (see our previous discussion [19]). While it is
true that indexing solutions have previously been proposed
and implemented in the Hadoop context, our approach is
fundamentally different. Indexes are available in Hive, but
the feature is integrated higher up in the stack and so in-
dexes only benefit Hive queries. Another approach, dubbed
“Trojan layouts” embeds indexes in HDFS block headers,
the consequence of which is that indexing requires rewriting
data [8] (cf. [13]). This unfortunately is not practical with
petabytes of data and in an environment where the indexing
scheme might evolve over time. Furthermore, Trojan lay-
outs introduce significant complexity since they alter HDF'S
replication behavior and make fundamental modifications to
the filesystem that hamper scalability.

Our Elephant Twin indexing framework integrates with
Hadoop at the level of InputFormats, which means that ap-
plications and frameworks higher up the Hadoop stack can
transparently take advantage of indexes “for free”. In Pig,

Shttp:/ /engineering. twitter.com/2012/06 /twitter-at-hadoop-
summit.html

for example, we can easily support push-down of select op-
erations. Our indexes reside alongside the data (in contrast
to Trojan layouts), and therefore re-indexing large amounts
of data is feasible. For example, we perform full-text index-
ing of all tweets for our internal tools; as our text processing
libraries improve (e.g., better tokenization), we drop all in-
dexes and rebuild from scratch; in fact, this has already
happened several times during the past year.

Finally, we are attempting to move beyond well-known
techniques such as iteration via A/B testing into more ex-
ploratory approaches, even beyond those outlined in Sec-
tion 5.4. The field of natural language processing provides
fertile intellectual ground from which we can draw rather
straightforward analogies to user behavior: application of
language models and collocation extraction are two simple
examples. More advanced (but speculative) techniques in-
clude applying automatic grammar induction techniques to
learn hierarchical decompositions of user activity [15]. For
example, we might learn that many sessions break down
into smaller units that exhibit a great deal of cohesion (each
with rich internal structure), in the same way that a sim-
ple English sentence decomposes into a noun phrase and
a verb phrase. Somewhat surprisingly, there is a rich in-
terplay between techniques for natural language processing
and analysis of biological sequence (e.g., DNA). Bridging
these two worlds, we can take inspiration from biological se-
quence alignment [3] to answer questions like: “What users
exhibit similar behavioral patterns?” This type of “query-
by-example” mechanism would help in understanding what
makes Twitter user engaged and “successful”, and what
causes one to abandon the service.

In the realm of exploratory user modeling, but unrelated
to both text processing and biological sequence analysis, we
are also using advanced visualization techniques [30] to pro-
vide data scientists a visual interface for exploring sessions—
the hope is that interesting behavioral patterns will map into
distinct visual patterns, such that insights will literally “leap
off the screen”.

In summary, all these ongoing activities are enabled by
unified client events logging and session sequences. We have
only begun to scratch the surface in terms of possibilities,
and are excited by the solid foundation that the infrastruc-
ture provides.

7. CONCLUSIONS

Data is the lifeblood of many organizations today, but it’s
sometimes easy to forget that accumulating vast data ware-
houses is pointless in and of itself. What’s important are the
insights that the data reveal about users and customers—
and obtaining these insights in a timely fashion. Support-
ing these activities requires several different components: a
robust message delivery mechanism, flexibility at the point
where log messages are generated, and ease with which those
messages can be manipulated downstream to perform data
analytics. For the first, Twitter uses Scribe and Thrift, both
of which are mature and widely-deployed. For the second
and third points, our first-generation application-specific ar-
chitecture made logging easy, but analysis difficult. We
believe that the unified client events logging infrastructure
strikes a better balance between the desires of application
developers (flexible logging) and the needs of data scien-
tists (easy data analysis). Session sequences are a way to
make common case queries even easier and faster. This,

1779

and other ongoing projects comprise our efforts to stream-
line the end-to-end analytics lifecycle, from messages logged
at production servers to insights delivered by data scientists.

8. ACKNOWLEDGMENTS

The logging infrastructure described in this paper is part
of Twitter’s analytics stack, to which numerous engineers
from the analytics team and from other parts of the orga-
nization have contributed. This work would not have been
possible without advice from our data scientists, who pro-
vide valuable guidance on what functionalities are actually
useful in their quest for insights. We’d like to thank Gi-
lad Mishne and Eric Sammer for useful comments on earlier
drafts of this paper.

9. REFERENCES

[1] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi,

A. Silberschatz, and A. Rasin. HadoopDB: An
architectural hybrid of MapReduce and DBMS
technologies for analytical workloads. VLDB, pp.
922-933, 2009.

R. Agrawal and R. Srikant. Mining sequential
patterns. ICDE, pp. 3—14, 1995.

S. Altschul, W. Gish, W. Miller, E. Myers, and

D. Lipman. Basic local alignment search tool. Journal
of Molecular Biology, 215(3):403-410, 1990.

K. Bajda-Pawlikowski, D. Abadi, A. Silberschatz, and
E. Paulson. Efficient processing of data warehousing
queries in a split execution environment. SIGMOD,
pp- 1165-1176, 2011.

D. Borthakur, J. Gray, J. Sarma,

K. Muthukkaruppan, N. Spiegelberg, H. Kuang,

K. Ranganathan, D. Molkov, A. Menon, S. Rash,

R. Schmidt, and A. Aiyer. Apache Hadoop goes
realtime at Facebook. SIGMOD, pp. 1071-1080, 2011.
K. Church and P. Hanks. Word association norms,
mutual information, and lexicography. Computational
Linguistics, 16(1):22-29, 1990.

J. Dean and S. Ghemawat. MapReduce: Simplified
data processing on large clusters. OSDI, pp. 137-150,
2004.

J. Dittrich, J.-A. Quiané-Ruiz, A. Jindal, Y. Kargin,
V. Setty, and J. Schad. Hadoop++: Making a yellow
elephant run like a cheetah (without it even noticing).
VLDB, pp. 515-529, 2010.

T. Dunning. Accurate methods for the statistics of
surprise and coincidence. Computational Linguistics,
19(1):61-74, 1993.

A. Gates, O. Natkovich, S. Chopra, P. Kamath,

S. Narayanamurthy, C. Olston, B. Reed, S. Srinivasan,
and U. Srivastava. Building a high-level dataflow
system on top of MapReduce: The Pig experience.
VLDB, pp. 1414-1425, 2009.

Y. He, R. Lee, Y. Huai, Z. Shao, N. Jain, X. Zhang,
and Z. Xu. RCFile: A fast and space-efficient data
placement structure in MapReduce-based warehouse
systems. ICDE, pp. 1199-1208, 2011.

P. Hunt, M. Konar, F. Junqueira, and B. Reed.
ZooKeeper: Wait-free coordination for Internet-scale
systems. USENIX, pp. 145-158, 2010.

[13]

[14]

[15]

[16]

[17]

A. Jindal, J.-A. Quiané-Ruiz, and J. Dittrich. Trojan
data layouts: Right shoes for a running elephant.
SoCC, pp. 21:1-21:14, 2011.

D. Jurafsky and J. Martin. Speech and Language
Processing. Pearson, 2009.

D. Klein and C. Manning. A generative
constituent-context model for improved grammar
induction. ACL, pp. 128-135, 2002.

R. Kohavi, R. Henne, and D. Sommerfield. Practical
guide to controlled experiments on the web: Listen to
your customers not to the HiPPO. KDD, pp. 959-967,
2007.

J. Kreps, N. Narkhede, and J. Rao. Kafka: A
distributed messaging system for log processing.
NetDB, 2011.

J. Lin and A. Kolcz. Large-scale machine learning at
twitter. SIGMOD, pp. 793-804, 2012.

J. Lin, D. Ryaboy, and K. Weil. Full-text indexing for
optimizing selection operations in large-scale data
analytics. MAPREDUCE Workshop, pp. 5966, 2011.
J. Lin and W. Wilbur. Modeling actions of PubMed
users with n-gram language models. Information
Retrieval, 12(4):487-503, 2009.

Y. Lin, D. Agrawal, C. Chen, B. Ooi, and S. Wu.
Llama: Leveraging columnar storage for scalable join
processing in the MapReduce framework. SIGMOD,
pp. 961-972, 2011.

1780

(22]
23]

24]

T. Mah, H. Hoek, and Y. Li. Funnel report mining for
the MSN network. KDD, pp. 450-455, 2001.

C. Manning and H. Schiitze. Foundations of Statistical
Natural Language Processing. MIT Press, 1999.

A. Montgomery, S. Li, K. Srinivasan, and J. Liechty.
Modeling online browsing and path analysis using
clickstream data. Marketing Science, 23(4):579-595,
2004.

A. Nandi, C. Yu, P. Bohannon, and R. Ramakrishnan.
Distributed cube materialization on holistic measures.
ICDE, pp. 183-194, 2011.

C. Olston, B. Reed, U. Srivastava, R. Kumar, and

A. Tomkins. Pig Latin: A not-so-foreign language for
data processing. SIGMOD, pp. 1099-1110, 2008.

D. Pearce. A comparative evaluation of collocation
extraction techniques. LREC, pp. 1530-1536, 2002.

A. Thusoo, J. Sarma, N. Jain, Z. Shao, P. Chakka,

N. Zhang, S. Anthony, H. Liu, and R. Murthy.
Hive—a petabyte scale data warehouse using Hadoop.
ICDE, 2010.

A. Thusoo, Z. Shao, S. Anthony, D. Borthakur,

N. Jain, J. Sarma, R. Murthy, and H. Liu. Data
warehousing and analytics infrastructure at Facebook.
SIGMOD, 2010.

K. Wongsuphasawat, J. Gémez, C. Plaisant, T. Wang,
M. Taieb-Maimon, and B. Shneiderman. LifeFlow:
Visualizing an overview of event sequences. CHI
Extended Abstracts, pp. 507-510, 2011.

